When a shock wave is incident on an obstacle, it is not only reflected back but also transmitted into the obstacle itself. The transmitted shock wave has not been fully investigated so far, compared with the reflected shock wave. In actual situations, the behavior and the characteristics of the transmitted shock wave are also of importance. In battlefields, human bodies are often subject to explosions and resulting shock waves. In particular, severe damage can be caused when a shock wave is transmitted into the human brain.

In the present study, we conducted experiments to investigate the behavior and intensity of a shock wave, after it is transmitted into various materials. The materials used were sintered metal, silicone, and polyethylene foam. They were fixed on a specially devised model with a cavity, by which the resulting wave after a shock wave is transmitted could be observed. In order to understand what is happening in sintered metal, a 2-D model made of straws was devised and used.

This content is only available via PDF.
You do not currently have access to this content.