The slug flow regime is probably the prevailing pattern in the oil and gas industry, appearing in the nuclear industry as well. As a consequence, several studies have been conducted in order to understand the physics of this flow regime and to obtain a model to predict its properties. This work presents a transient hybrid methodology to simulate the gas-liquid slug regime in pipes with a change of direction from horizontal to downward inclined flow. The simulation initiates with a slug tracking model assuming the pipe to be filled with liquid, and follow the unit cells while they flow through the horizontal section; the information about the unit cells entering the pipe are obtained from experimental data. Near the elbow and beyond, the unit cells are simulated by a simplified two-fluid Lagrangian model, capable of providing flow details with the change of direction, and the dissipation of the slug flow to the stratified regime in a descendent slope. Simulations for a 4.862-m pipe were carried out, with the change of direction from horizontal to −3° and −5°. The results were compared to experimental data, showing that the model can successfully predict the flow behaviour for the given conditions.

This content is only available via PDF.
You do not currently have access to this content.