The Gas-Liquid Cylindrical Cyclone (GLCC©1) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity based separators over a wide range of applications. More than 6,500 GLCC©’s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [4]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This study is carried out for a specific GLCC© field application, separating light oil, steam flooded wells in Minas, Indonesia. Computational Fluid Dynamics (CFD) software is used to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.

This content is only available via PDF.
You do not currently have access to this content.