Understanding particle detachment from surfaces is necessary to better characterize dust generation and entrainment in large-scale industries (such as metallurgical and foundry facilities, clean room settings, semiconductor device fabrication) and in health care (powder inhalers in pharmaceuticals, or the unwanted respiratory exposure to small particles, e.g., asbestos). The present work investigates the aerodynamics of a particle attached to a surface subjected to given fluid flow. The particle is represented as a sphere in a parallel plate channel, and this constitutes a three-dimensional (3D) flow problem. Since many of the challenges and results of the full 3D problem are also manifest in a corresponding two-dimensional (2D) configuration, as a first step, 2D simulations are conducted in a parallel plate channel, with the particle approximated as a cylinder. In both 2D and 3D cases, to model the particle just touching the surface leads to a singularity in grid generation; we have addressed this issue with two concurrent approaches. In the first approach, the particle is located at various finite distances from the surface; results are then extrapolated to zero height (particle just touching the surface). In the second approach, the bottom of the particle is embedded into the surface at different depths; again, results are extrapolated to zero embedding depth. In all cases, the flow is assumed to be steady, incompressible and laminar: (1 < Rechannel < 2000), and is represented by the Navier-Stokes equations. A fully-developed velocity profile is specified at the channel inlet. The computational domain is discretized using structured and hybrid grids, considering the boundary-layer physics. The governing equations are solved using the finite-volume FLUENT code. From the obtained numerical results, the coefficients of lift, drag and moments are computed, and compared with the results available in the published literature. For the particle touching the surface, aerodynamic forces (drag and lift) and moments are obtained by extrapolation for both approaches (particle located at finite height off the wall, and the partially embedded particle). The results of the 2D and 3D simulations show that, for a particle touching the surface, a threshold velocity (with corresponding threshold Re) exists for particle detachment (i.e., positive lift), and the moment plot indicates that the particle will tend to roll as it detaches.
Skip Nav Destination
ASME 2017 Fluids Engineering Division Summer Meeting
July 30–August 3, 2017
Waikoloa, Hawaii, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5805-9
PROCEEDINGS PAPER
Simulations of Particle Detachment From a Flat Surface
Nithin Kumar Palakurthi,
Nithin Kumar Palakurthi
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
Urmila Ghia,
Urmila Ghia
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
Leonid Turkevich
Leonid Turkevich
CDC/NIOSH/DART, Cincinnati, OH
Search for other works by this author on:
Nithin Kumar Palakurthi
University of Cincinnati, Cincinnati, OH
Urmila Ghia
University of Cincinnati, Cincinnati, OH
Leonid Turkevich
CDC/NIOSH/DART, Cincinnati, OH
Paper No:
FEDSM2017-69111, V01BT11A006; 10 pages
Published Online:
October 24, 2017
Citation
Palakurthi, NK, Ghia, U, & Turkevich, L. "Simulations of Particle Detachment From a Flat Surface." Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting. Volume 1B, Symposia: Fluid Measurement and Instrumentation; Fluid Dynamics of Wind Energy; Renewable and Sustainable Energy Conversion; Energy and Process Engineering; Microfluidics and Nanofluidics; Development and Applications in Computational Fluid Dynamics; DNS/LES and Hybrid RANS/LES Methods. Waikoloa, Hawaii, USA. July 30–August 3, 2017. V01BT11A006. ASME. https://doi.org/10.1115/FEDSM2017-69111
Download citation file:
38
Views
Related Proceedings Papers
Related Articles
Aerodynamic Interactions Between Parachute Canopies
J. Appl. Mech (January,2003)
Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor/Trailer Geometry
J. Fluids Eng (August,2009)
Inverse Design of and Experimental Measurements in a Double-Passage Transonic Turbine Cascade Model
J. Turbomach (July,2005)
Related Chapters
A Study on the Application of Internet Video in Rural Medicine Distribution
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Fluid Flow Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine