The field of consumer and power electronics is surging ahead with more sophisticated and powerful devices that are smaller and more capable than before. Proper and efficient thermal management of such devices is increasingly challenging when addressing requirements to reduce size, weight and cost (both manufacturing and operational) while enabling the overall system to operate at higher power densities. The current effort considers a typical power electronic module most often used to address DC to AC voltage conversion in larger distributed energy systems. Significant heat generation results from switching and conduction losses inherent in such a circuit, which can then cause a drop in the power processing capabilities or worse, the destruction of the device itself if not properly cooled. A nominal architecture for the circuit module is selected and a combined experimental and analytical study is performed to implement an integrated micro-cooling chip architecture that leverages single phase jet-impingement and vortex flow approaches. The micro-cooling chip array is a multi-laminate design that features localized fluidic cells ducted to bring coolant in and out of a heat exchanger section. The paper reports on the design of the multi-laminate micro-cooling chip module in terms of manufacturability and fluid dynamics of the coolant in combination with the power electronics module. Results from bench-scale testing done on a monolithic part fabricated using additive manufacturing process are reported and compared with analysis. The results provide an initial basis for further miniaturization of the power electronic module and insights to manufacturability using standard 3D printing approaches.
Skip Nav Destination
ASME 2017 Fluids Engineering Division Summer Meeting
July 30–August 3, 2017
Waikoloa, Hawaii, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5805-9
PROCEEDINGS PAPER
Evaluation of an Integrated Micro-Cooling Chip Architecture for Managing Thermal Concerns of a Power Electronics Module
George Papadopoulos,
George Papadopoulos
Innoveering, LLC, Ronkonkoma, NY
Search for other works by this author on:
Daniel Kearney,
Daniel Kearney
ABB Corporate Research Centre, Baden-Dättwil, Switzerland
Search for other works by this author on:
Daniele Torresin
Daniele Torresin
ABB Corporate Research Centre, Baden-Dättwil, Switzerland
Search for other works by this author on:
George Papadopoulos
Innoveering, LLC, Ronkonkoma, NY
Daniel Kearney
ABB Corporate Research Centre, Baden-Dättwil, Switzerland
Daniele Torresin
ABB Corporate Research Centre, Baden-Dättwil, Switzerland
Paper No:
FEDSM2017-69519, V01BT10A015; 10 pages
Published Online:
October 24, 2017
Citation
Papadopoulos, G, Kearney, D, & Torresin, D. "Evaluation of an Integrated Micro-Cooling Chip Architecture for Managing Thermal Concerns of a Power Electronics Module." Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting. Volume 1B, Symposia: Fluid Measurement and Instrumentation; Fluid Dynamics of Wind Energy; Renewable and Sustainable Energy Conversion; Energy and Process Engineering; Microfluidics and Nanofluidics; Development and Applications in Computational Fluid Dynamics; DNS/LES and Hybrid RANS/LES Methods. Waikoloa, Hawaii, USA. July 30–August 3, 2017. V01BT10A015. ASME. https://doi.org/10.1115/FEDSM2017-69519
Download citation file:
56
Views
Related Proceedings Papers
Related Articles
Additive Manufactured Impinging Coolant, Low Electromagnetic Interference, and Nonmetallic Heat Spreader: Design and Optimization
J. Electron. Packag (December,2020)
Early Design Stage Evaluation of Thermal Performance of Battery Heat Acquisition System of a Hybrid Electric Aircraft
J. Electrochem. En. Conv. Stor (May,2020)
Autonomous Thermal Control System for Highly Variable Environments
J. Heat Transfer (June,2009)
Related Chapters
Telecom: A Field with Myths and Mistakes All Its Own
More Hot Air
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Characteristics, Components, and Performance of A/C System Exchangers
Heat Exchanger Engineering Techniques