Wafer fabrication is a critical part of the semiconductor process when the finest linewidth with the improvement of technology continues to decline. The nanoparticles contained in the slurry or ultrapure water used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection of the nanoparticles size and concentration. Resistive pulse sensing technology is one of the methods that may cover this question. There were a lot of reports showing that nanoparticles properties of materials differ significantly from their properties at nano length scales. So, we want to clear the translocation dynamic and ion current changes in measurement of metal nanoparticles or non-metal nanoparticles in different concentration electrolytes through the nanopore when resistive pulse sensing technology has been used. In this study, we try to use a finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. Then, the reliability of the simulation results was verified by resistive pulse sensing test. The existing results showed that the lower the ion concentration the greater the effect of resistive pulse sensing was. We investigated the effect of resistive pulse sensing on different materials by both simulations and experiments. The results are discussed in this article.

This content is only available via PDF.
You do not currently have access to this content.