Vortex Induced Vibrations (VIV) of a pivoted circular cylinder with two degrees of freedom are investigated experimentally, focusing on quantifying the wake topology. Experiments are performed in a water tunnel for a pivoted cylinder with a fixed mass ratio of 10.8, moment of inertia ratio of 87.0–109.5, and a diameter-based Reynolds number of 3100. The reduced velocity was varied from 4.42 to 9.05 by varying the natural frequency of the structure. Velocity measurements were performed via time-resolved, two-component Particle Image Velocimetry (PIV), synchronized with cylinder displacement measurements. Time and phase-averaging are employed to analyze the wake development and relate it to the structural response. Proper Orthogonal Decomposition (POD) is utilized to gain insight into the development of coherent structures in the cylinder wake. The observed shedding patterns agree well with the Morse & Williamson [1] shedding map except for the cases at the boundary between 2P and non-synchronized shedding. The results show that the cylinder follows an elliptical trajectory with equal frequency of oscillation in streamwise and transverse directions. For the 2P regime, the tilt and direction of trajectory affect the formation and development of vortices in the wake. This results in a distinct asymmetry about the wake centerline in time-averaged statistics.

This content is only available via PDF.
You do not currently have access to this content.