Accurate performance simulation can provide operating parameters and performance parameters for the gas turbine’s optimization, maintenance, and fault diagnosis. However, the components maps necessary for performance simulation are not publically available. In addition, the same type of gas turbine has slightly different component operating characteristics due to components′ variations in status and assembly tolerance. These causes bring real difficulties to the research of performance simulation.

In order to obtain accurate components characteristics and performance simulation results, the original or generic components maps should be modified by the scaling factors. In the process of calculating scaling factors, the simulation model is applied repeatedly to determine the engine’s actual performance parameters until the simulated gas path thermal parameters are compatible with the actual measureable data.

This paper introduces a new adaptation method and substitutes the calculation model with the simulation model in the adaptation process. It directly calculates the mass flow rate, isentropic efficiency, and pressure ratio of compressor and turbine based on measureable parameters such as gas path temperature, pressure, fuel component and mass flow rate. Moreover, this paper introduces the virtual gas generator model that enhances the applicability of calculation model based performance adaptation method on gas generators with different structures.

This method has been applied to GE PGT25+ gas generator (single-spool) and RR RB211-24G gas generator (double-spool). Compared with the simulation model used in adaptation process, performance calculation model is much simpler and less time consuming.

This content is only available via PDF.
You do not currently have access to this content.