Pipe diffuser draws more attentions these years as the stage pressure ratio and loads grow, since it is known that the pipe diffuser has a superior performance to the traditional vane diffuser as the diffuser inlet flow field is transonic or supersonic. Generally speaking, when the pressure ratio is high enough to give rise to the emergence of a critical cross-section, it would usually be in the diffuser, closing to the leading edge other than in the impeller. Therefore, the diffuser would have a significant impact on stage choke margin and its performance while be difficult to design and to match the impeller with satisfaction. To address the problem, a preliminary geometry design method for pipe diffuser is presented in this paper. In this paper, the performance and flow field analysis are based on numerical simulation carried out by Numeca, a commercial simulation software. For verified the calculated results′ reliability and grid independence, corresponding calculations and comparisons are conducted and discussed. Then, the performance of stage with pipe diffuser is compared with the stage with vane diffuser. Next, the specific effects of incidence on the performance and flow field are analyzed and discussed respectively. At last, an optimized aerodynamic structure of pipe diffuser is presented. As shown in the CFD results, the stage peak isentropic efficiency can reach up to 83.65% with the stage total pressure ratio slightly increased from 6.50 to 6.78, which means 4.29% of isentropic efficiency was raised by substituting the pipe diffuser for the vane diffuser.

This content is only available via PDF.
You do not currently have access to this content.