Numerical simulation experiments on vortex shedding and corresponding drag coefficients from a two-dimensional bluff body are performed over a range of Reynolds numbers from one to four million. Active control is implemented on the body via velocity boundary conditions in the form of blowing and suction jets. These controls range in velocity from half to double the free-stream inlet velocity. An overall drag coefficient reduction in excess of 75% is observed for maximum power input to the actuators. In addition, a trend of increasing Strouhal number for each successive increase in actuator power (and corresponding reduction in drag) is noted. Important physical mechanisms involving near-body wake flow are analyzed to determine optimal wake flow pattern and corresponding control schemes.
- Fluids Engineering Division
Active Flow Control Schemes for Bluff Body Drag Reduction
Whiteman, JT, & Zhuang, M. "Active Flow Control Schemes for Bluff Body Drag Reduction." Proceedings of the ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1A, Symposia: Turbomachinery Flow Simulation and Optimization; Applications in CFD; Bio-Inspired and Bio-Medical Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES and Hybrid RANS/LES Methods; Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Active Fluid Dynamics and Flow Control — Theory, Experiments and Implementation. Washington, DC, USA. July 10–14, 2016. V01AT13A002. ASME. https://doi.org/10.1115/FEDSM2016-7520
Download citation file: