The unit of a Pumped Storage Power Station experienced abnormal noise and vibration in the guide vanes at the slight opening when the pump turbine was in the process of startup in the pumping mode. Based on this phenomena, the three dimensional model of the pump turbine was established, RNG k-epsilon two equations turbulence model was selected for the flow numerical simulation in the pump turbine because this model can simulate both the flow separation and vortex dynamics, and it is more accurate in the near wall areas. The governing equations were discretized with the finite volume method. The computation was carried out with three steps, 1.steady calculation, 2.unsteady calculation with constant guide vane opening, 3.unsteady calculations with the increase of the opening of guide vanes, by using the results of the last step as the initial condition. According to the three dimensional simulation results, the main flow between the guide vanes was deflected from attaching to the one vane to the other vane with the opening of the guide vanes. The calculation of complete 3D flow indicated that the deflections of the flows between the different adjacent guide vanes were basically the same, however, the deflections starting times had a few differences. The variation of the torque on the guide vane was also investigated, and the results shown the abrupt changes occurred during the deflection process of the main flow. When the torque produced by the servomotor cannot adapt quickly enough to the abrupt changes, the vibration and loud scrape noise might occur.
- Fluids Engineering Division
Flow Analysis of the Guide Vanes Region of Pump Turbine at the Slight Opening in the Pumping Startup Process
Fan, H, Ji, Q, Liao, W, & Yang, H. "Flow Analysis of the Guide Vanes Region of Pump Turbine at the Slight Opening in the Pumping Startup Process." Proceedings of the ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1A, Symposia: Turbomachinery Flow Simulation and Optimization; Applications in CFD; Bio-Inspired and Bio-Medical Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES and Hybrid RANS/LES Methods; Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Active Fluid Dynamics and Flow Control — Theory, Experiments and Implementation. Washington, DC, USA. July 10–14, 2016. V01AT09A011. ASME. https://doi.org/10.1115/FEDSM2016-7739
Download citation file: