This paper presents a numerical simulation of unsteady flow over wind turbine arrays to understand rotor-rotor and rotor-tower wake interaction in wind farms. The computations are carried out by incorporating Actuator Line method into a large eddy simulation. This methodology is validated by comparing the results to predictions of large eddy simulation using exact 3D blade geometries from a two-blade NREL Phase VI turbine. The method is then used to simulate the wake development in a two-turbine case. It is discovered that in the full wake setting the tower has a significant influence on the central part of the turbine wake. It is observed that the tower wake is twisted due to the rotation of the turbine wake. As a result, this tower wake is expected to have impact on the performance of downstream wind turbines, which cannot be overlooked. The present work also demonstrates the potential of combining AL method with LES to predict wake interactions in wind farms.

This content is only available via PDF.
You do not currently have access to this content.