The stresses acting on aggregates smaller than the Kolmogorov length scale in homogeneous isotropic turbulence were estimated by a two-scale numerical simulation. The fluid dynamics at the scales larger than the Kolmogorov length scale was calculated by a Direct Numerical Simulation of the turbulent flow, in which the aggregates were modeled as point particles. Then, we adopted Stokesian Dynamics to evaluate the phenomena governed by the smooth velocity field of the smallest scales. At this level the disordered structure of the aggregates was modeled in detail, in order to take into account the role that the primary particles have in generating and transferring the internal stress. From this result, it was possible to evaluate the internal forces acting at intermonomer contacts and determine the occurrence of breakup as a consequence of the failure of intermonomer bonds. The method was applied to disordered aggregates with isostatic and highly hyperstatic structures, respectively.

This content is only available via PDF.
You do not currently have access to this content.