The feasibility of reduced order modeling for turbulent flows using Proper Orthogonal Decomposition (POD) based Surrogate modeling and Galerkin Projection is demonstrated for use in the hydrodynamic modeling of the Very High Temperature Reactor (VHTR) lower plenum. The lower plenum of the Helium-cooled VHTR consists of vertical cylinder arrays subjected to turbulent jetting and cross-flow. Unsteady Reynolds-Averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations are used to acquire an ensemble of possible solution fields for flow around a circular cylinder in an open domain. Numerical results are validated to prior published literature. From the resultant data ensemble are extracted the coherent structures to create an optimal basis. POD is used to extract the coherent structures as this technique has been demonstrated to provide a basis of a chosen dimension such that the average L2-error is minimized for the best approximation of the basis to the data ensemble. The resultant optimal basis is used to construct accurate reduced order models. The computational effectiveness and insights revealed by this reduced order modeling approach are discussed for both the Surrogate modeling approach and Galerkin Projection.
- Fluids Engineering Division
Proper Orthogonal Decomposition Based Reduced Order Modeling of the Very High Temperature Reactor Lower Plenum Hydrodynamics
Banyay, GA, Ahmadpoor, M, & Brigham, JC. "Proper Orthogonal Decomposition Based Reduced Order Modeling of the Very High Temperature Reactor Lower Plenum Hydrodynamics." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1D, Symposia: Transport Phenomena in Mixing; Turbulent Flows; Urban Fluid Mechanics; Fluid Dynamic Behavior of Complex Particles; Analysis of Elementary Processes in Dispersed Multiphase Flows; Multiphase Flow With Heat/Mass Transfer in Process Technology; Fluid Mechanics of Aircraft and Rocket Emissions and Their Environmental Impacts; High Performance CFD Computation; Performance of Multiphase Flow Systems; Wind Energy; Uncertainty Quantification in Flow Measurements and Simulations. Chicago, Illinois, USA. August 3–7, 2014. V01DT27A013. ASME. https://doi.org/10.1115/FEDSM2014-21896
Download citation file: