In this study, an Eulerian-Lagrangian computational methodology is utilized for large eddy simulation (LES) of mixing phenomena in jet in cross-flows. A high-order multi-block algorithm is used to solve Eulerian equations in a generalized coordinate system. The composition is formulated based on the filtered mass density function (FMDF) and its equivalent stochastic Lagrangian equations, which is solved by Lagrangian Monte-Carlo method. Parameters influencing mixing enhancement including jet velocity profile, and jet pulsation are investigated. A good consistency between Eulerian and Lagrangian components of the numerical scheme is established. In jet in cross-flow (JICF) simulations, the vortical structures and flow features are predicted with the current numerical scheme. The results also show that the jet velocity profile affects both trajectory and mixing condition and the jet pulsation can enhance mixing depending on the Strouhal numbers. The obtained results including concentration distributions are in good agreement with available experimental data ensuring the performance and reliability of LES/FMDF methodology to study mixing in relatively complex flow configurations such as JICF.

This content is only available via PDF.
You do not currently have access to this content.