Factors that influence the non-uniform gas-liquid distribution in refrigerant distributors in air conditioners were studied. Gas-liquid flows in two-pass and multi-pass distributors were numerically simulated with a particle/grid hybrid method; droplets and liquid films were mainly simulated using a particle method, and gas flows were simulated using a grid method. Complex behaviors of multi-scale gas-liquid interfaces in the multi-pass distributor were simulated because droplets that were smaller than the grid size could be simulated without numerical diffusion through the gas-liquid interfaces. The effect of the connecting angle of the bend pipe was studied in the two-pass distributor, whereas the effects of the tube’s position relative the distributor inflow and the effect of gravity were investigated in the multi-pass distributor. The model was validated against multiple experimental data taken from an at-scale physical model. We found that keeping the liquid at the inlets of the multi-pass tubes was important for ensuring a uniform distribution.

This content is only available via PDF.
You do not currently have access to this content.