A numerical simulation is performed to study the effects of particle density on gas-liquid-solid flows in bubble columns. An Eulerian-Lagrangian model is used where the liquid flow is modeled by a volume-averaged system of governing equations and motions of particles and bubbles are modeled by Lagrangian trajectory method. Interactions between particle-particle, bubble-bubble, bubble-liquid and particle-liquid are included in the study. The drag, lift, buoyancy, and virtual mass forces are evaluated for the particles and bubbles. Particle-particle and bubble-bubble interactions are accounted for by a hard sphere model. The bubble coalescence is also included in this study. The predicted results were compared with the experimental data in a previous work, and satisfied agreement was obtained. Particles with various density are used in different cases. A parcel method is used to account for particle load. The effects of particle density on gas-liquid-solid three-phase flows are discussed based on the comparison of the transient flow characteristics of these gas-liquid-solid three-phase flows. The simulations show that large particle density may result in weak phase mixing in gas-liquid-solid three-phase flows in bubble columns.
- Fluids Engineering Division
Effects of Particle Density on Gas-Liquid-Solid Flows in Bubble Columns
Zhang, X, & Ahmadi, G. "Effects of Particle Density on Gas-Liquid-Solid Flows in Bubble Columns." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1C, Symposia: Fundamental Issues and Perspectives in Fluid Mechanics; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Gas-Solid Flows: Dedicated to the Memory of Professor Clayton T. Crowe; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. Chicago, Illinois, USA. August 3–7, 2014. V01CT23A002. ASME. https://doi.org/10.1115/FEDSM2014-21082
Download citation file: