This paper presents results from adjoint-based optimization processes applied to an inlet pipe of an exhaust gas recirculation cooler in a diesel engine. The boundary conditions applied resemble those of a truck at cruising speed. Three implementations are considered for the gradient calculations with the objective of minimizing the total pressure drop through the pipe. In the first implementation the gradients are evaluated with respect to the motion of the center of the cell using a newly presented implementation based on the ALE formulation of the Navier-Stokes equations. The results are compared to the surface sensitivities, where the gradient of the cost function is evaluated with respect to the normal motion of the surface of the pipe. In the last approach a topological optimization is performed where the gradients are evaluated with respect to a momentum loss in each cell. This gives information that is used when blocking the cells.

This content is only available via PDF.
You do not currently have access to this content.