For decades, trickle bed reactors (TBRs) have been widely used in chemical process industries due to their cost effectiveness and simplicity in operation. Despite their wide use, designing efficient TBRs is challenging, considering the complexity of various transport processes and interactions that occur simultaneously in TBRs. Hence, it is of prime importance to have a comprehensive understanding on the multiphase flow inside TBRs. The objective of this study is to investigate hydrodynamic of multiphase flow and to identify the flow regime developed inside TBRs. Multiphase flow inside TBRs is investigated by utilizing the well-established computational fluid dynamics approach and experimental study. A “discrete particle” approach together with Volume of Fluid multiphase flow modeling is utilized in this study. The effect of the bed particle diameter, spacing, and arrangement is examined and evaluated. The results are analyzed with regards to liquid content and pressure drop. The findings will assist in developing guidelines for designing TBRs.
- Fluids Engineering Division
Numerical Investigation of Multiphase Flow Hydrodynamics in Trickle Bed Reactors
Kurnia, JC, ben Salem, I, Nadeem, H, Shamim, T, & Sassi, M. "Numerical Investigation of Multiphase Flow Hydrodynamics in Trickle Bed Reactors." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1C, Symposia: Fundamental Issues and Perspectives in Fluid Mechanics; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Gas-Solid Flows: Dedicated to the Memory of Professor Clayton T. Crowe; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. Chicago, Illinois, USA. August 3–7, 2014. V01CT16A022. ASME. https://doi.org/10.1115/FEDSM2014-22152
Download citation file: