Inflow conditions influence on the flow behavior of human blood in a separated and reattached flow region is investigated. Hemorheological data that account for the yield stress and shear-thinning non-Newtonian characteristics of blood are used. The governing mass and momentum conservation equations along with the Herschel-Bulkley constitutive equation are solved numerically using a finite-difference scheme. Two inflow velocity profiles are considered, uniform and fully-developed ones. A parametric study is performed to reveal the impact of inflow velocity profile, upstream flow restriction, and rheology on the recirculation strength and reattachment characteristics of the flow field. Uniform inflow conditions result in larger relative recirculation intensity, in comparison with the fully-developed ones, only for a moderate upstream flow restriction. The separated flow region size in the case of a fully-developed inflow is always smaller than the one observed for uniform inflow. Larger separated flow regions with stronger flow recirculation, are predicted by the Newtonian model in comparison with the yield shear-thinning model for all studied inflow and upstream restriction conditions. The separated flow region size displays a strong dependency on the inflow velocity profile and upstream flow restriction, in comparison with the observed dependency on the used hemorheological model.

This content is only available via PDF.
You do not currently have access to this content.