A passive jet flow control method was employed to suppress the unsteady vortex shedding from a circular cylinder at the Reynolds number level of Re = (0.18∼1.1)×105. The passive jet flow control was achieved by blowing jets from the holes near the rear stagnation point of the cylinder, which are connected to the in-take holes located near the front stagnation point through channels embedded inside the cylinder. Since a part of the oncoming flow would inhale into the in-take holes, flow through the embedded channels, and blow out from the holes near the rear stagnation point to suppress/manipulate the alternating vortex shedding in the wake flow behind the circular cylinder, the present passive jet flow control method does not require any additional energy inputs for the flow control. In the present study, the aerodynamic force (i.e., both lift and drag) acting the circular cylinder model with and without the passive jet flow control were compared quantitatively at different Reynolds numbers (i.e., different inlet mean speed). It was found that, in addition to almost eliminating the fluctuations of the lift forces acting on the cylinder, the passive jet flow control method was also found to reduce the mean drag acting on the cylinder model greatly. The instantaneous vorticity distributions and corresponding streamline patterns were used to reveal the underlying physics about why and how the passive jet flow control method can be used to suppress the alternating vortex shedding and induce a symmetrical wake pattern behind the cylinder model.
- Fluids Engineering Division
Suppression of Unsteady Vortex Shedding From a Circular Cylinder by Using a Passive Jet Flow Control Method Available to Purchase
Chen, W, Li, H, & Hu, H. "Suppression of Unsteady Vortex Shedding From a Circular Cylinder by Using a Passive Jet Flow Control Method." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1B, Symposia: Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Flow Manipulation and Active Control: Theory, Experiments and Implementation; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows. Chicago, Illinois, USA. August 3–7, 2014. V01BT14A005. ASME. https://doi.org/10.1115/FEDSM2014-21318
Download citation file: