This study examines the use of a passively actuated trailing edge of a thin wing during oscillation motion. The integration of a flexible trailing edge with an oscillating wing has the ability to alter the transient lift and drag characteristics, as well as the time averaged values. The results are obtained for a chord-length based Reynolds number of 0 and 40,000, and at oscillation frequencies of 0.5 and 1 Hz. The non-dimensional heaving amplitude is fixed at 0.25 and the pitching is 20°. The flexibility of the trailing edge is controlled by a torsion rod between the main wing and the trailing edge. Three conditions are evaluated: a very stiff rod (essentially non-flexible trailing edge), a moderately flexible rod and a very flexible rod. Results obtained indicate that lift and drag have a shift in the time averaged values, where the drag and lift both decrease as the trailing edge flexibility increases. These findings have application to both enhanced propulsion and energy harvesting.
- Fluids Engineering Division
The Effects of a Passively Actuated Trailing Edge on the Aerodynamics of an Oscillating Wing
Rushen, J, Siala, F, Totpal, AD, Planck, CJ, & Liburdy, JA. "The Effects of a Passively Actuated Trailing Edge on the Aerodynamics of an Oscillating Wing." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1B, Symposia: Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Flow Manipulation and Active Control: Theory, Experiments and Implementation; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows. Chicago, Illinois, USA. August 3–7, 2014. V01BT12A012. ASME. https://doi.org/10.1115/FEDSM2014-22155
Download citation file: