In the middle and western China, agricultural irrigation water often contains a high sediment concentration. In order to save the cost, no filtration devices are required for sprinkler irrigation, which results in the wear of sprinkling irrigation equipment, especially on the nozzle. In this study, experiments on the erosion wear of an impact sprinkler (PY1-20sh with aluminum alloy nozzles) were conducted under different conditions of sediment concentration and erosion time. Using the experimental data as boundary conditions, numerical simulations based on the discrete phase model (DPM) were conducted to analyze the wear of the internal surface of the sprinkler’s full flow passage. Based on both experimental and numerical results, the erosion wear mechanism of the internal flow surface was revealed, and prediction model of the nozzle’s wear rate was established, providing the technical guidance for design and operation of the impact sprinkler.
- Fluids Engineering Division
Experimental and Numerical Investigation on the Erosion Wear of an Impact Sprinkler
Xu, Y, Lin, G, & Yan, H. "Experimental and Numerical Investigation on the Erosion Wear of an Impact Sprinkler." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1B, Symposia: Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Flow Manipulation and Active Control: Theory, Experiments and Implementation; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows. Chicago, Illinois, USA. August 3–7, 2014. V01BT10A022. ASME. https://doi.org/10.1115/FEDSM2014-21339
Download citation file: