In this paper, a single-stage pump with diffuser vanes of different outlet diameters has been investigated both numerically and experimentally. The influence of the diffuser vane outlet diameter on pump hydraulic performance and on the radial force of the impeller is explored. Pumps equipped with three different diffusers but with impellers and volutes of the same parameters were simulated by 3D Navier-Stokes solver ANSYS-FLUENT in order to study the effect of the outlet diameter of vaned diffuser on performance of the centrifugal pump. Structured grids of high quality were applied on the whole computational domain. Experimental results were acquired by prototype experiments and were then compared with the numerical results. Both experimental and numerical results show that the performance of a pump with a diffuser of smaller outlet diameter is better than of bigger outlet diameter under all operating conditions. The radial force imposed on the impeller obtained by unsteady numerical simulation was analyzed. The results also indicated that an appropriate decrease in the outlet diameter of the diffuser vane could increase the radial force.
- Fluids Engineering Division
Numerical Research of the Effect of the Outlet Diameter of Diffuser on the Performance and the Radial Force in a Single-Stage Centrifugal Pump
Wei, J, Guojun, L, Pengfei, L, Lisheng, Z, & Hongyang, Q. "Numerical Research of the Effect of the Outlet Diameter of Diffuser on the Performance and the Radial Force in a Single-Stage Centrifugal Pump." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1B, Symposia: Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Flow Manipulation and Active Control: Theory, Experiments and Implementation; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows. Chicago, Illinois, USA. August 3–7, 2014. V01BT10A020. ASME. https://doi.org/10.1115/FEDSM2014-21299
Download citation file: