In the water transportation applications of the liquid-solid mixture pumping is very common. Among these applications the submersible well pumps, dewatering, drainage, and irrigation could be mentioned. In this work, CFD study of influence of amount of solid phase in the solid-liquid mixture on the pump parameters is presented. Two stages vertical mixed flow pump was modeled. Fluent 14.5.7 commercial code was used for simulations. Mixer multiphase model can be used to model multiphase flows where the phases move at different velocities, but assume local equilibrium over short spatial length scales. Therefore, it was chosen for mixture model. SST k-ω model for turbulence was selected. Multi-reference frame approach was used for rotation domains. All mixtures in the presented work have water as their primary phase; the secondary phase is assumed to be a continuum of solid spherical particles of silicon with diameters that range from 0.1 mm to 0.4 mm. The load of the solid particles ranges from 0.5% to 10% of volume fraction of the mixture on the pump inlet. The total number of the mesh cells was 9 million.

Calculations of the pump head for mixture and for pure water were done using the same water flow rate.

Comparison of the results shows that they are close within ∼1% difference. It needs to be emphasized that the pump head is determined by the liquid phase. On the other hand, the efficiency of the pump with high solid phase load was much lower in comparison with the same flow rate of water for pure water case. These results may help in designing pumps for transporting liquid-solid mixture.

This content is only available via PDF.
You do not currently have access to this content.