Ice accretion is a major threat to all exposed structures such as wind turbines, overhead power cables, offshore structures and aircrafts. Such deposition starts by an impact of water droplets of different sizes on the surface of the exposed structure. This work aims to shed more light on the difference in the dynamics occurring upon the impact of microdroplets on substrates with various wettabilities, hydrophilic (aluminum) and Superhydrophobic (Aluminum + WX2100) surfaces. Experiments are conducted on a wide range of diameters, between cloud sized droplets with diameters ranging down to 20μm, and 10 times larger droplets with a diameter of 250 μm. A comparison in the impact (through deformation) results is made all through the wide range and explained using the two extremes. This is done experimentally by analyzing the maximum spread diameter on the hydrophillic surface and superhydrophobic surface and maximum height as a function of time on the hydrophillic surface. Both parameters are visualized experimentally, simulated numerically for the same impact velocities and then results are compared for verification.
- Fluids Engineering Division
Impact of Micro-Droplets on Superhydrophobic and Hydrophilic Surfaces
Gomaa, H, Tembely, M, Esmail, N, & Dolatabadi, A. "Impact of Micro-Droplets on Superhydrophobic and Hydrophilic Surfaces." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1A, Symposia: Advances in Fluids Engineering Education; Turbomachinery Flow Predictions and Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; Droplet-Surface Interactions; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods. Chicago, Illinois, USA. August 3–7, 2014. V01AT05A008. ASME. https://doi.org/10.1115/FEDSM2014-21650
Download citation file: