More than 90% of the thrust generated by thunniform swimmers is known to be produced by the oscillation of their caudal fin, and the rest by their caudal peduncle. We have designed an experiment in which we can mimic, in a simplified manner, the kinematics of swimmers that mainly use their caudal fin for propulsion. The set-up consists of a rectangular foil attached to a shaft that is controlled by a stepper motor, and the whole assembly can be towed in still water at different controllable speeds. With this system we can study the effect of different types of pitching on the hydrodynamic loads and the performance of the propulsion system. By changing the type of foil, the effects of the flexibility in the propulsion can also be analysed. Hydrodynamic loads were measured with a 6-axes balance, and the flow structures were investigated using a Digital Particle Image Velocimetry (DPIV). Loads and DPIV velocity fields were acquired synchronously.

This content is only available via PDF.
You do not currently have access to this content.