In this study, a computational fluid dynamics (CFD) model is used to numerically characterize the heat transfer from an I-beam support structure of an aluminum reduction pot, during the free convection cooling process. A slice of the I-beam structure is modeled on two different finite element commercial platforms, ANSYS (FLUENT) and StarCCM+, in a suitable domain of air. The K-epsilon Reynolds averaging technique is used to model the turbulence in both platforms. Validation of the modeling technique and parameters adapted is appropriately performed. The structure is segmented and space mean Nusselt numbers (Nu) characterizing the flow are calculated for each section, for Rayleigh number (Ra) ranges typically experienced by the respective section. Expressions correlating the free convection flow over this structure are deduced based on a regression analysis. To conclude, an application of the deduced correlation in modeling the free convection cooling of an aluminum reduction pot is presented.
- Fluids Engineering Division
Numerical Study of the Free Convection Heat Transfer From an I-Beam Support Structure
Brimmo, AT, Shatilla, Y, & Hassan, MI. "Numerical Study of the Free Convection Heat Transfer From an I-Beam Support Structure." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1A, Symposia: Advances in Fluids Engineering Education; Turbomachinery Flow Predictions and Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; Droplet-Surface Interactions; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods. Chicago, Illinois, USA. August 3–7, 2014. V01AT03A026. ASME. https://doi.org/10.1115/FEDSM2014-22199
Download citation file: