Precipitation crystallization is one possibility to produce nano-scaled solid particles from the liquid phase. High nucleation and growth rates are generated by mixing two well soluble reactants and their subsequent reaction to a sparingly soluble product. These primary processes can be very fast. Therefore experimental access to internal parameters is given insufficiently due to predominantly very short process times. Computational Fluid Dynamics (CFD) based methods are a promising tool to gain insight into those inaccessible processes. Unfortunately, 3D modeling of complex precipitation reactors poses enormous difficulties and computational costs to CFD especially in the production scale under the aspect of macroscopic flowfields down to microscale modeling of mixing, rheology and particle formation. Therefore, a new methodic approach is presented that is able to handle these complex interactions. Due to local and temporal multiscale complexity, it is not advisable to model the complete apparatus. One basic principle of the methodical consideration is the arrangement of cross-linked compartments to reduce the huge unsimulatable control volume in its complexity and dimensions. Thereby, population balance equations (PBE) are solved, using CFD measured, average state variables, with a discrete one-dimensional High Resolution Finite Volume (HRFV) algorithm. Nevertheless appropriate fundamental kinetics for primary and secondary processes have to be implemented. Besides the new methodic approach, this paper deals with the influence of temporal supersaturation buildup on the product particle distribution. It is shown that important conclusions about the mixing behavior of Confined Impinging Jet mixers (CIJMs) can be drawn by coupling CFD and external population balancing even without any micromixing model. The contribution provides an insight into the methodic approach and first derived results.
- Fluids Engineering Division
Compartment Method for Dynamic Multi-Scale Simulation of Precipitation Reactors
Metzger, L, & Kind, M. "Compartment Method for Dynamic Multi-Scale Simulation of Precipitation Reactors." Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1A, Symposia: Advances in Fluids Engineering Education; Turbomachinery Flow Predictions and Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; Droplet-Surface Interactions; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods. Chicago, Illinois, USA. August 3–7, 2014. V01AT03A013. ASME. https://doi.org/10.1115/FEDSM2014-21547
Download citation file: