An integrated experimental and numerical investigation was carried out to gain insight into the heat transfer phenomena and flow characteristics inside a domestic refrigerator. A refrigerator model was constructed using insulation foam sheets according to the inner dimensions of a household refrigerator. A reversal heat leak analysis was conducted on the constructed model in a temperature-controlled chamber, where the chamber temperature was lower than the inner temperature of the refrigerator. A temperature-controlled heater was mounted where the evaporator was. The heater was enclosed in a heater box to heat the air and to maintain a high temperature in the refrigerator. A variable speed fan was used to force air circulation. Thermocouples were used to measure the temperature at specified positions and to measure the average temperature difference across the refrigerator side walls. The correlation between the status of the heater and the control temperature variation pattern was analyzed. Heat loss rate was calculated using the data from the thermocouples too. The calculated heat loss rate closely matched the generated heat by the heater and the fan. Moreover, according to the results with different input voltages, the variation trend of the heat flux density was analyzed. A conjugate heat transfer analysis was conducted based on the constructed model using Fluent. The heater was modeled as a heat volume source and the fan was modeled using a pressure jump condition based on the experiment result. Comparisons were made between the experimental and numerical results. The predicted heat loss rate and the heat flux density through the walls matched very well with the experimental results. And the variation trend of the heat flux density with different input voltages also showed the same trend as the experimental result. And the airflow pattern and the temperature distribution were also analyzed in detail.

This content is only available via PDF.
You do not currently have access to this content.