The aim of this paper was to develop a capacitance based sensor capable of measuring void fraction in a continuous two-phase flow field. The design methodology and operation of the capacitance based void fraction sensor is discussed. Two designs of capacitance void fraction sensors were developed and tested. Some of the problems associated with the first were identified and a new sensor electrode configuration was developed which presented a more sensitive and repeatable response. Data was collected covering a wide range of void fraction measurements ranging from 0 to 1 for water as the working fluid. Calibration of the sensor required that the air gap or void capacitance (dry signal) be measured followed by an increase in liquid levels (wet signal) to obtain a range of void fraction measurements for static calibration. The static calibration data obtained was nonlinear for the full range of void fraction measurements for water. This paper covers the design requirements, calibration procedure and static calibration data obtained for the developed sensor, and dynamic void fraction data measurements. The sensor was tested in both a horizontal and vertical orientation and proved to be orientation insensitive. The experimental results are promising for water and verify successful operation for measuring void fraction in continuous two-phase flows.

This content is only available via PDF.
You do not currently have access to this content.