A ventilated supercavity consists of a large gas-filled bubble enveloped around an underwater vehicle that allows for significant drag reduction and an increase in maximum vehicle speed. Previous studies at the Saint Anthony Falls Laboratory (SAFL) of the University of Minnesota focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling near the surface, under waves. In supercavitation technology, it is critical that the vehicle remains within the cavity while traveling through water to avoid unwanted planing forces. A study has been carried out in the high speed water tunnel to investigate the effects of unsteady flow on axisymmetric, ventilated supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity appearance, cavitation parameters and their relation to sea state conditions are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter.

This content is only available via PDF.
You do not currently have access to this content.