The opaque nature of many multiphase flows has long posed a significant challenge to the visualization and measurement of desired characteristics. To overcome this difficulty, X-ray imaging, both in the form of radiography and computed tomography, has been used successfully to quantify various multiphase flow phenomena. However, the relatively low temporal resolution of typical X-ray systems limit their use to moderately slow flows and time-average values. This paper discusses the development of an X-ray detection system capable of high-speed radiographic imaging that can be used to visualize multiphase flows. Details of the hardware will be given and then applied to sample multiphase flows in which X-ray radiographic images of up to 1,000 frames per second were realized. The sample flows address two different multiphase flow arrangements. The first is a gas-liquid system representative of a small bubble column. The second is a gas-solid system typically found in a fluidized bed operation. Sample images are presented and potential challenges and solutions are discussed.
- Fluids Engineering Division
A High-Speed X-Ray Detector System for Noninvasive Fluid Flow Measurements
Morgan, TB, Halls, BR, Meyer, TR, & Heindel, TJ. "A High-Speed X-Ray Detector System for Noninvasive Fluid Flow Measurements." Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting. Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Liquid-Solids Flows; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes; Transport Phenomena in Mixing; Turbulent Flows: Issues and Perspectives. Incline Village, Nevada, USA. July 7–11, 2013. V01CT24A004. ASME. https://doi.org/10.1115/FEDSM2013-16427
Download citation file: