Proactive acoustic noise control technologies in wind turbines and blowers have in recent years been the focus of intensive research to integrate wind turbines in residential building and to address public concerns on noise pollution. However efforts to understand the mechanics has been inconclusive, mainly due to the complexity and commercial confidentiality of the topic.

The paper reports on the experimental investigation on two methods in controlling aerodynamic noise. A counter-rotating-double-row-turbine with variable gap/spacing (s) was designed, built and tested. Serrations were designed and attached on the leading edge and the trailing edge of the blades to proactively control aerodynamic noise. The model was operated in fan-mode and air velocity, shaft-revolution; electric-fan-power, acoustic noise amplitude (dB) and Centre frequency (CF in Hz) were measured for a number of spacing and serrations. Coefficients of Performance (COP), dB, CF were plotted against tip speed (TS).

It was noticed that:

• The double-shaft-fan has operated quieter than the single shaft fan especially as TS decreases. Acoustic noise (dB) dropped 20% at TS = 4m/s to less than 2% at TS = 10m/s. Efficiency and CF increased in the double-shaft fan as TS increased. Spacing variation between blade-rows had insignificant effect on the dB, Cf, and efficiency.

• Serrations on single-shaft fan have also reduced dB (up to 10%), increased efficiency and CF with more positive effects with the serrations on the leading edge than the trailing edge. Serrations are more effective at higher TS range.

• Serrations on a double-shaft fan with an optimum spacing, reduced acoustic noise (dB) only allow speeds [at TS <4m/s]. However minor improvement was noticed in efficiency or noise frequency.

This content is only available via PDF.
You do not currently have access to this content.