Wave propagation effects are of increasing importance in simulation models for fluid power applications due to rising demands for both the accuracy of predicted system responses as well as the range of interesting operating frequencies. Well documented examples can be found in technologies such as fuel injection for internal combustion engines or hydraulically driven punching machines. The distribution system for the pressurized fluid is predominantly made up of pipes and hoses as well as cylindrical bores in the housings of various components. These cylindrical geometries lend themselves conveniently for modeling as a network of elements with a one or two-dimensional spatial representation. The junctions between these elements, for instance a sharp elbow bend or a T-junction between three pipelines is very often idealized as a lossless Kirchhoff-type node. The present paper shows a comparison of transmission line modeling based on the well known frequency-dependent friction theory for transient laminar flow of a weakly compressible viscous fluid in transmission lines with a CFD model resolving the local effects occurring at a junction or intersection of cylindrical elements. Results are given for a 90 degree elbow under step excitation with the material parameters of a typical ISO 46 mineral oil based hydraulic fluid. These results can be used in order to assess the importance of including the usually neglected local effects at the junctions. In further work they will form the basis for reduced order dynamic models of transmission line junctions.
Skip Nav Destination
ASME 2013 Fluids Engineering Division Summer Meeting
July 7–11, 2013
Incline Village, Nevada, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5554-6
PROCEEDINGS PAPER
CFD Based Modeling of Wave Propagation in Liquid Transmission Line Junctions
Clemens Fries,
Clemens Fries
Johannes Kepler University, Linz, Austria
Search for other works by this author on:
Bernhard Manhartsgruber
Bernhard Manhartsgruber
Johannes Kepler University, Linz, Austria
Search for other works by this author on:
Clemens Fries
Johannes Kepler University, Linz, Austria
Bernhard Manhartsgruber
Johannes Kepler University, Linz, Austria
Paper No:
FEDSM2013-16592, V01AT03A025; 6 pages
Published Online:
December 13, 2013
Citation
Fries, C, & Manhartsgruber, B. "CFD Based Modeling of Wave Propagation in Liquid Transmission Line Junctions." Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting. Volume 1A, Symposia: Advances in Fluids Engineering Education; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods. Incline Village, Nevada, USA. July 7–11, 2013. V01AT03A025. ASME. https://doi.org/10.1115/FEDSM2013-16592
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
Modeling Requirements for the Parallel Simulation of Hydraulic Systems
J. Dyn. Sys., Meas., Control (March,1994)
Simulation of Structural Deformations of Flexible Piping Systems by Acoustic Excitation
J. Pressure Vessel Technol (August,2007)
Fluid Transmission Line Modeling Using a Variational Method
J. Dyn. Sys., Meas., Control (March,2000)
Related Chapters
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition