In this paper we study the particle transport and deposition in a turbulent square duct flow with an imposed magnetic field using Direct Numerical Simulations (DNS) of the continuous flow. A magnetic field induces a current and the interaction of this current with the magnetic field generates a Lorentz force which brakes the flow and modifies the flow structure. A second-order accurate finite volume method in time and space is used and implemented on a GPU. Particles are injected at the entrance to the duct continuously and their rates of deposition on the duct walls are computed for different magnetic field strengths. Because of the changes to the flow due to the magnetic field, the deposition rates are different on the top and bottom walls compared to the side walls. This is different than in a non-MHD square duct flow, where quadrant (and octant) symmetry is obtained.

This content is only available via PDF.
You do not currently have access to this content.