Air circulation and temperature distribution inside a domestic refrigerator chamber are two important factors in refrigerator design. They are critical for food quality control and energy saving and are affected by natural/forced convection, radiation and layout of the stored food. Knowledge about the actual air flow and temperature distributions inside a refrigerator is required to improve temperature homogeneity and reduce energy consumption. In present work we numerically study the air circulation and the heat transfer phenomena in a domestic frost-free refrigerator. The inner compartment, the evaporator and the outside thermal insulation foam are considered. The conjugate heat transfer problem is studied by solving the unsteady laminar Navier-Stokes equations using a finite volume method. The Boussinesq approximation is used to model the natural convection. The discrete ordinate method is adopted to take into account the radiation heat transfer between the cold back evaporator and warm surfaces to further understand the impact of radiation. The accuracy of the numerical methods is verified through grid sensitivity analysis and comparison with available numerical and experimental data. Comparisons are made with and without radiation. Our simulations show that radiation significantly changes the temperature distribution and air circulation pattern. The effects of shelf and food stored on the temperature distribution and air circulation are also studied by comparing three configurations: empty refrigerator, empty refrigerator with shelves and loaded refrigerator with food.

This content is only available via PDF.
You do not currently have access to this content.