Xanthan gum solutions with various concentrations were used as the dispersed phase to study the formation time for drop formation at a T-junction. Two critical concentrations (0.05 and 0.2 wt%) of xanthan gum solutions were observed resulting in three distinct regimes. The droplet diameter increased with increasing xanthan gum concentration within each regime but the transition through each critical concentration was accompanied by a significant reduction in the droplet size. Experimental results showed that the droplet formation time decreased exponentially with increasing continuous phase flow rate. It was also found that the formation time was reduced with increasing dispersed phase flow rate. Xanthan gum solutions with a higher concentration within each regime resulted in a longer formation time, and there was a decrease in the formation time at each critical concentration. The formation time consists of growth and breakup stages and the effect of xanthan gum concentration on each stage was examined.

This content is only available via PDF.
You do not currently have access to this content.