In order to predict cavitation performance of the centrifugal pump, including cavitating structures and vapour volume at the blade suction side, as well as its relationship with the backflow in the impeller eye, a 3D numerical simulation of detailed steady and unsteady cavitating flow was applied to reproduce its inner flow fields at part load conditions (0.5Qd and 0.4Qd). The comparisons of cavitation characteristics of the current centrifugal pump at an on-design point (1.0Qd) and a high flow rate (1.2Qd) were achieved as well. In addition, Frequency analysis of pressure fluctuations at the blade passages and the inlet pipe were also obtained during cavitation for a flow coefficient of 50%. The results further show that successive blade cavitation patterns and the creeping cavitation number dropping appear for a wide range of flow rates when the inlet total pressure decreases from cavitation inception to the breakdown of the centrifugal pump, as is quite different from that when cavitation occurs at 1.0Qd or 1.2Qd. Unbalanced attached cavities on the blade suction side were also observed at 0.5Qd. Meanwhile, the unsteady behaviour of cavities attached to the blade suction side and cavitation number dropping depend on the flow rate and cavitation number. Another significant characteristic of the phenomenon is that all the domain frequencies in blade passages and inlet pipe at part load conditions are 0.048Hz∼48.285Hz, which is typically lower than the shaft rotational frequency of the model centrifugal pump.

This content is only available via PDF.
You do not currently have access to this content.