In this paper, we discuss the implementation and testing of a novel boiling mass transfer model to simulate the thermal and phase transformation behavior, generated due to boiling of binary mixtures, using the commercial CFD code AVL FIRE® v2011. The phase change model, based on detailed bubble dynamics effects, is solved in conjunction with incompressible phasic momentum, turbulence and energy equations in a segregated fashion, to study the flow boiling process inside a rectangular duct. Full three dimensional validation studies including the effect of flow velocity and exit pressure conditions, acting on a wide range of operating wall (superheat) temperatures, clearly shows the suppression of heat and mass transfer coefficients with enhancement in flow convection. Competing mechanisms such as phase change process and turbulent convection are identified to influence the heat transfer characteristics. In particular, the varying influence of the mass transfer effects on the heat flux characteristics with alteration in wall temperature is well demonstrated. Comparisons of the predicted total heat flux, computed as the sum of the convection and phase change components, indicate a very good agreement with experimental data, wherever available. Description of the flow field inclusive of phasic fraction, temperature and velocity field provides extensive details of the multiphase behavior of the boiling flow. Some preliminary results on the phase change work flow to model heat transfer in cooling jackets, for automotive applications, is also discussed.

This content is only available via PDF.
You do not currently have access to this content.