This work investigated the application of a rotating cylinder to the upper leeward edge of a three dimensional bluff body in ground proximity.

Aerodynamic drag measurements, base pressure contours and wake velocity profiles were obtained in a closed jet wind tunnel for Reynolds Numbers in the range of approximately 220,000 to 660,000. The cylinder of diameter 0.1H was mounted on the upper edge of the leeward face of the body. The ratio of cylinder surface velocity to freestream velocity was varied from 0 to 2.0. A computational model of the geometry was developed and results are presented for various velocity ratios and cylinder diameters.

The results of this work demonstrated that, even at low velocity ratios, the cylinder rotation has a large effect on the flow structures in the body wake region. A large downwash is observed that creates two large counter-rotating vortices and a resultant significant increase in drag.

The aerodynamic drag changes are presented as a function of velocity ratio and are shown to be Reynolds Number insensitive over the range tested. Aerodynamic drag was shown to increase with increasing velocity ratio over the velocity ratio range 0.25 to 2.0.

This content is only available via PDF.
You do not currently have access to this content.