There is an increasing interest in developing renewable energy systems to address the increasing global energy demand and fight climate change. One emerging technology is the transpired air collector, which is a unique type of corrugated and perforated sheet metal installed in front of a building to absorb incident sunlight to preheat the building air intake. As the airflow behaviour in the channel influences the air heat gain, it is important to understand the fluid dynamics within the transpired air collector to maximize its efficiency. A full scale experimental setup using a commercial transpired air collector was built in a laboratory environment. Particle Image Velocimetry (PIV) was used to measure two-dimensional velocity fields at different air flow rates and at different locations inside the channel. PIV data were used to compute various turbulent characteristics of the air flow. It was found that the mean velocity peaks tended towards the flat construction wall side. The profiles of the Reynolds stress indicated a significant momentum transfer from the corrugation wall by the turbulent velocity field towards the bulk flow. Results demonstrate that the turbulence produced by the corrugation waveform dominates the entire channel.
Skip Nav Destination
ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
July 8–12, 2012
Rio Grande, Puerto Rico, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4475-5
PROCEEDINGS PAPER
Investigation of the Turbulent Flow Behaviour in a Transpired Air Collector
David Greig,
David Greig
University of Western Ontario, London, ON, Canada
Search for other works by this author on:
Kamran Siddiqui,
Kamran Siddiqui
University of Western Ontario, London, ON, Canada
Search for other works by this author on:
Panagiota Karava
Panagiota Karava
Purdue University, West Lafayette, Indiana
Search for other works by this author on:
David Greig
University of Western Ontario, London, ON, Canada
Kamran Siddiqui
University of Western Ontario, London, ON, Canada
Panagiota Karava
Purdue University, West Lafayette, Indiana
Paper No:
FEDSM2012-72301, pp. 751-756; 6 pages
Published Online:
July 24, 2013
Citation
Greig, D, Siddiqui, K, & Karava, P. "Investigation of the Turbulent Flow Behaviour in a Transpired Air Collector." Proceedings of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Symposia, Parts A and B. Rio Grande, Puerto Rico, USA. July 8–12, 2012. pp. 751-756. ASME. https://doi.org/10.1115/FEDSM2012-72301
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Foreword
J. Eng. Gas Turbines Power (April,2013)
Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module
J. Sol. Energy Eng (November,2011)
Analysis of Turbulent Gas-Solid Suspension Flow in a Pipe
J. Fluids Eng (September,1983)
Related Chapters
Future Solar Energy Applications
Solar Energy Applications
A Utility Perspective of Wind Energy
Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition
Part A: Farm Waste to Energy
Biomass and Waste Energy Applications