A numerical study is conducted to examine the vortex structure about a revolving wing in quiescent flow employing a high-fidelity, implicit large eddy simulation (ILES) technique found to be effective in simulating flows that exhibit interspersed regions of laminar, transitional, and turbulent flows. The revolving wing configuration consists of a single, aspect ratio one rectangular plate extended out a distance of 0.5 chords from the origin. Shortly after the onset of the motion, the rotating wing generates a stable and coherent vortex system across the leading edge and wing root that remains throughout the motion. The aerodynamic loads are also analyzed and found to remain mostly constant during the maneuver. Transitional effects on the vortex system are investigated over a range of Reynolds numbers (3,000 < Re < 15,000). It is found that higher Reynolds numbers promote more breakdown of the leading edge and root vortices, but do not alter the stability of the vortex system. The aerodynamic loads also show little sensitivity to Reynolds number with the higher Reynolds numbers producing only moderately higher forces. Comparisons with recent experimental PIV measurements using a PIV-like data reduction technique applied to the computational solution show very favorable agreement with the mid-span velocity and vorticity contours.

This content is only available via PDF.
You do not currently have access to this content.