Impinging jets are an efficient mechanism to enhance wall heat transfer, and are widely used in engineering applications. The flow field of an impinging jet is quite complex and it is a challenging case for turbulence models validation as well as measurements techniques. In the present work, a detailed investigation of a cold jet impinging on a hot plate operating in the turbulent flow regime was conducted. The flow field was characterized by both Laser Doppler Anemometry and Particle Image Velocimetry (PIV) techniques in order to collect 1st and 2nd order velocity statistics to allow a reliable assessment of the numerical simulations. Comparison was performed with two turbulence methodologies: RANS (κ–ω SST model) and LES (Dynamic Smagorinsky model). The comparison was performed to assess LES feasibility and accuracy in capturing the anisotropic structures that several tested RANS models missed. The mean velocity, instantaneous velocity, Reynolds stresses and Nusselt profiles obtained numerically are compared with experimental data. A physical insight about the general flow dynamics was obtained with the extensive amount of information available from the LES.

This content is only available via PDF.
You do not currently have access to this content.