A computational study of the Richtmyer-Meshkov instability is presented for an inclined interface perturbation in support of experiments being performed at the Texas A&M shock tube facility. The study is comprised of simulations performed using the Arbitrary Lagrange Eulerian (ALE) code called ARES. These simulations were performed to late times after reshock with varying parameters including inclination angle, and incident shock Mach number. The inclination angle was varied over a wide range which provided initial interface perturbations in both the linear and non-linear regimes. Recent work have shown a distinct difference between the linear and nonlinear interface perturbations growth using a newly developed inclined interface scaling model. This work is extended here by examining the vorticity distribution for these two cases and focusing on the conditions before and after reshock. One linear and one non-linear interface perturbation case are examined qualitatively through plots of the vorticity, and density fields. The total circulation and circulation production rates for these cases are plotted as a function of time. The circulation is shown to double after reshock for the non-linear case, while for the linear case it increases by approximately the same amount as the non-linear case but from near zero just before reshock. The mixing width, and mix mass growth rates are also examined for each case both before and after reshock.
Skip Nav Destination
ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
July 8–12, 2012
Rio Grande, Puerto Rico, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4475-5
PROCEEDINGS PAPER
Simulations and Analysis of Shock Accelerated Inhomogenous Flows With and Without Reshock
Jacob A. McFarland,
Jacob A. McFarland
Texas A&M University, College Station, TX
Search for other works by this author on:
Devesh Ranjan,
Devesh Ranjan
Texas A&M University, College Station, TX
Search for other works by this author on:
Jeffery A. Greenough
Jeffery A. Greenough
Lawrence Livermore National Laboratory, Livermore, CA
Search for other works by this author on:
Jacob A. McFarland
Texas A&M University, College Station, TX
Devesh Ranjan
Texas A&M University, College Station, TX
Jeffery A. Greenough
Lawrence Livermore National Laboratory, Livermore, CA
Paper No:
FEDSM2012-72309, pp. 1047-1053; 7 pages
Published Online:
July 24, 2013
Citation
McFarland, JA, Ranjan, D, & Greenough, JA. "Simulations and Analysis of Shock Accelerated Inhomogenous Flows With and Without Reshock." Proceedings of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Symposia, Parts A and B. Rio Grande, Puerto Rico, USA. July 8–12, 2012. pp. 1047-1053. ASME. https://doi.org/10.1115/FEDSM2012-72309
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Single-Interface Richtmyer–Meshkov Turbulent Mixing at the Los Alamos Vertical Shock Tube
J. Fluids Eng (July,2016)
Simulations and Analysis of the Reshocked Inclined Interface Richtmyer–Meshkov Instability for Linear and Nonlinear Interface Perturbations
J. Fluids Eng (July,2014)
High-Order Eulerian Simulations of Multimaterial Elastic–Plastic Flow
J. Fluids Eng (May,2018)
Related Chapters
Introduction and Background
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Vibration Analysis of the Seated Human Body in Vertical Direction
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3