Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Studies on this subject have already been done, providing results on flow regimes, fluidelastic instabilities, and turbulence-induced vibration. The spectrum of turbulence-induced forces has usually been expected to be similar to that in single-phase flow. However, a recent study, using tubes with a diameter larger than that in a real steam generator, showed the existence of significant quasi-periodic forces in two-phase flow. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air-water cross-flow, to simulate two-phase mixtures. The tube bundle here has the same geometry as that of a real steam generator. The quasi-periodic forces have now also been observed in this tube bundle. The present work aims to understand turbulence-induced forces acting on the tube bundle, providing results on drag and lift force spectra and their behaviour according to flow parameters, and describing their correlations. Detailed experimental test results are presented in this paper. Comparison is also made with previous measurements with larger diameter tubes. The present results suggest that quasi-periodic fluid forces are not uncommon in tube arrays subjected to two-phase cross-flow.

This content is only available via PDF.
You do not currently have access to this content.