The analytical model (Sim; 2007), to predict the two-phase damping ratio for upward cross-flow through horizontal tube bundles, has been evaluated. The damping model was formulated, based on Feenstra’s model (2000) for void fraction and various models (homogeneous, Levy, Martinelli-Nelson and Marchaterre) for two-phase friction multiplier. The analytical results of drag coefficient on a cylinder and two-phase Euler number were compared with the experimental results by Sim-Mureithi (2010). The factor, a relation between frictional pressure drop and the hydraulic drag coefficients, could be determined by considering experimental results. The two-phase damping ratios, given by the analytical model, were compared with existing experimental results. It was found that the model, based on Marchaterre’s model, is suitable for air-water mixture while the Martinelli-Nelson’s model for steam-water and Freon mixtures. The two-phase damping ratio is independent on pitch mass flux for air-water mixture, but it is more or less influenced by the mass flux for steam-water/Freon(134) mixtures. The two-phase damping ratios, given by the present model, agree well with experimental results for a sufficiently wide range of pitch mass ratio, quality and p/d ratios.

This content is only available via PDF.
You do not currently have access to this content.