The objective of this work is to develop and validate a robust method to simulate the hydroelastic responses of flexible hydrofoil in turbulent, cavitating flow. A two degrees-of-freedom (2-DOF) model is used to simulate the plunging and pitching motion at the foil tip due to bending and twisting deformation of a 3-D cantilevered hydrofoil. The 2-DOF model is loosely coupled with the commercial computational fluid dynamics (CFD) solver STAR-CCM+ to efficiently simulate the fluid-structure interaction (FSI) responses of a cantilevered, rectangular hydrofoil. The numerical predictions are compared with experimental measurements for cases with and without cavitation. The experimental studies were conducted in the cavitation tunnel at the French Naval Academy (IRENav), France. Only quasi-steady cases with Reynolds number (Re) of 750,000 are shown in this paper. In general, the numerical results agree well with the experimental measurements and observations. The results show that elastic deformation of the POM polyacetate (flexible) hydrofoil lead to increases in the angle of attack, which resulted in higher lift and drag coefficients, lower lift to drag ratio, and longer cavities compared to the stainless steel (rigid) hydrofoil. Whereas only stable cavitation cases are considered in this paper, significant interaction effects were observed during experiments for cases with unstable cavitation due to interations between the foil natural frequencies and the cavity shedding frequencies. Transient analysis of the FSI responses of 3-D elastic hydrofoils in turbulent, cavitating flow is currently under work.

This content is only available via PDF.
You do not currently have access to this content.