Two-phase flow in power plant steam generators can induce tube vibrations, which may cause fretting-wear and even fatigue cracks. It is therefore important to understand the relevant two-phase flow-induced vibration mechanisms. Fluidelastic instabilities in cross-flow are known to cause the most severe vibration response in the U-bend region of steam generators. This paper presents test results of the vibration of a normal triangular tube bundle subjected to air-water cross-flow. The test section presents 31 flexible tubes. The pitch-to-diameter ratio of the bundle is 1.5, and the tube diameter is 38 mm. Tubes were flexible in the lift direction. Seven tubes were instrumented with strain gauges to measure their displacements. A broad range of void fractions (from 10% to 90%) and fluid velocities (up to 13 m/s) were tested. Fluidelastic instabilities were observed for void fractions between 10% and 60%. Periodic fluid forces were also observed. The results are compared with those obtained with the rotated triangular tube bundle, showing that the normal triangular configuration is more stable than the rotated triangular configuration.

This content is only available via PDF.
You do not currently have access to this content.