Micropolar theory constitutes extension of the classical field theories. It is based on the idea that every particles of the material can make both micro rotation and volumetric micro elongation in addition to the bulk deformation. Since this theory includes the effects of micro structure which could affect the overall behaviour of the medium, it reflects the physical realities much better than the classical theory for the engineering materials. In the micropolar theory, the material points are considered to possess orientations. A material point carrying three rigid directors introduces one extra degree of freedom over the classical theory. This is because in micropolar continuum, a point is endowed with three rigid directors only. A material point is then equipped with the degrees of freedom for rigid rotations, in addition to the classical translational degrees of freedom. In fact, the micropolar covers the results of the classical continuum mechanics. The micropolar theory recently takes attentions in fluid mechanics and mathematicians and engineers are implementing this theory in various theoretical and practical applications. In this paper the fluid-structure analysis of a vibrating micropolar plate in contact with a fluid is considered. The fluid is contained in a cube which all faces except for one of the lateral faces are rigid. The only non-rigid lateral face is made of a flexible micropolar plate and therefore, interacts with the fluid. An analytical approach is utilized to investigate the vibration characteristics of the aforementioned fluid-structure problem. The fluid is non-viscous and incompressible. Duplicate Chebyshev series, multiplied by boundary functions are used as admissible functions and the frequency equations of the micropolar plate are obtained by the use of Chebyshev-Ritz method. Also the vibration analysis of the plates modeled by micropolar theory has been done. This analysis shows that some additional frequencies due to the micropolarity of the plate appears among the values of the frequencies obtained in the classical theory of elasticity, as expected. These new frequencies are called micro-rotational waves. We also observed that when the micropolar material constants vanish, these additional frequencies disappear and only the classical frequencies remain. Specially, we observed that these additional frequencies are more sensitive to the change of the micro elastic constants than the classical frequencies. The frequencies and mode shapes of the coupled fluid structure interaction problem are obtained in the present study based on the micropolar and classical modeling. The numerical results for the problem are compared with those obtained by the analytical method for their differences and to confirm the proposed method. The microrotatinal wave frequencies and mode shapes are also developed. The results show that the natural frequencies and mode shapes for the transverse vibrations of the problem are in good agreement with the classical one and our knowledge from the physical nature of the problem.
Skip Nav Destination
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5451-8
PROCEEDINGS PAPER
Analysis of Vibrating Micropolar Plate in Contact With a Fluid
A. Najafi,
A. Najafi
Islamic Azad University, Shiraz Branch, Shiraz, Iran
Search for other works by this author on:
F. Daneshmand,
F. Daneshmand
Shiraz University, Shiraz, Iran; McGill University, Montreal, QC, Canada
Search for other works by this author on:
S. R. Mohebpour
S. R. Mohebpour
Persian Gulf University, Bushehr, Iran
Search for other works by this author on:
A. Najafi
Islamic Azad University, Shiraz Branch, Shiraz, Iran
F. Daneshmand
Shiraz University, Shiraz, Iran; McGill University, Montreal, QC, Canada
S. R. Mohebpour
Persian Gulf University, Bushehr, Iran
Paper No:
FEDSM-ICNMM2010-31036, pp. 1031-1038; 8 pages
Published Online:
March 1, 2011
Citation
Najafi, A, Daneshmand, F, & Mohebpour, SR. "Analysis of Vibrating Micropolar Plate in Contact With a Fluid." Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B. Montreal, Quebec, Canada. August 1–5, 2010. pp. 1031-1038. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-31036
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
An Overview of Theories of Continuum Mechanics With Nonlocal Elastic Response and a General Framework for Conservative and Dissipative Systems
Appl. Mech. Rev (May,2017)
Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods
Appl. Mech. Rev (November,2004)
Microcontinuum Field Theories II: Fluent Media
Appl. Mech. Rev (January,2002)
Related Chapters
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Transverse Free Vibration Analysis of Hybrid SPR Steel Joints
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Modeling Fluid-Structure Interaction in Cavitation Erosion using Smoothed Particle Hydrodynamics
Proceedings of the 10th International Symposium on Cavitation (CAV2018)